

Mark Scheme (Results)

January 2015

Pearson Edexcel International A Level in Statistics 2 (WST02/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2015
Publications Code IA040682
All the material in this publication is copyright
© Pearson Education Ltd 2015

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol √ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. Ignore wrong working or incorrect statements following a correct answer.

January 2015 WST02 Statistics S2 Mark Scheme

	Wark Scrienie		
Question Number	Scheme	Mark	S
1(a)	X~Po(3.2)	B1	
	$P(X=3) = \frac{e^{-3.2}3.2^3}{3!}$	M1	
	$\begin{array}{c} 3! \\ = 0.2226 \\ \end{array} \text{ awrt } 0.223$	A1	(3)
(b)	7~Po(1.6)	B1	(3)
(~)	$P(Y \ge 1) = 1 - P(Y = 0)$	M1	
	$=1-e^{-1.6}$		
	= 0.7981 awrt 0.798	A1	(3)
(c)	$\frac{P(X=1) \times P(X=3)}{P(Y=4)} = \frac{\left(e^{-0.8} \times 0.8\right) \times \left(\frac{e^{-0.8} \cdot 0.8^{3}}{3!}\right)}{\frac{e^{-1.6} \cdot 1.6^{4}}{1!}}$	M1 M1 M1 A1	
	4!		
	$=\frac{0.3594\times0.0383}{0.05513}$		
	= 0.05513 $= 0.25$	A1	(5)
(d)	$A \sim Po(72)$ approximated by N(72,72)	B1	(3)
, ,	$\frac{5000}{60} = 83.33$	M1	
		1011	
	$P(A \ge 84) = P\left(Z \ge \frac{83.5 - 72}{\sqrt{72}}\right)$	M1 M1	
	$= P(Z \ge 1.355)$		
	= 0.0869 awrt 0.087/0.088	A1	(5)
(a)	B1 for writing or using Po(3.2)		
(33)	$M1 \frac{e^{-\lambda}\lambda^3}{3!}$		
(b)			
(b)	B1 for writing or using Po(1.6) M1 1 – P($Y = 0$) or 1 – $e^{-\lambda}$		
(c)	1^{st} M1 using Po(0.8) with X=1 or X=3 (may be implied by 0.359 or 0.0383)		
	$2^{\text{nd}} \text{ M1 } \left(e^{-\lambda} \times \lambda\right) \times \left(\frac{e^{-\lambda} \lambda^3}{3!}\right) \text{ (consistent lambda) awrt 0.0138 implies } 1^{\text{st}} 2 \text{ M}$		
	marks		
	3^{rd} M1 correct use of conditional probability with denominator = $\frac{e^{-1.6}1.6^4}{41}$		
	4! 1 st A1 fully correct expression		
	2 nd A1 0.25 (allow awrt 0.250)		
(d)	B1 Writing or using N(72,72) 1 st M1 for exact fraction or awrt 83.3 (may be implied by 84) (Note: Use of N(4320,4320) can score B1 and 1 st M1) 2 nd M1 Using 84 +/- 0.5		
	3 rd M1 standardising using 82.5, 83, 83.3 (awrt 83.3), 83.5, 83.8, 84 or 84.5, 'their mean' and 'their sd'		

Question Number	Scheme	Marks
2(a)	P(X > 4) = 1 - F(4)	M1
	$=1-\frac{3}{5}$	
	$=\frac{2}{5}$ oe	
	5	A1 (2)
(b)	1	B1
	dF(x) = 1	(1) M1
(c)	$f(x) = \frac{df(x)}{dx} = \frac{1}{5}$	1122
	$f(x) = \frac{dF(x)}{dx} = \frac{1}{5}$ $f(x) = \begin{cases} \frac{1}{5} & 1 \le x \le 6 \\ 0 & \text{otherwise} \end{cases}$	A1
	0 otherwise	
		(2)
(d)	E(X) = 3.5	B1 (1)
(e)	Variance = $\frac{(6-1)^2}{12}$ or $\int_1^6 \frac{1}{5} x^2 dx - (3.5)^2$	M1
		A1
	$=\frac{25}{12}$ awrt 2.08	
(f)	$E(X^2) = Var(X) + [E(X)]^2$	(2)
	$= \frac{25}{12} + 3.5^2 \text{or} \int_1^6 \frac{1}{5} x^2 dx \qquad \text{or } \int_1^6 \frac{1}{5} (3x^2 + 1) dx$	M1
		1711
	$=\frac{43}{3}$	
	$E(3X^{2}+1) = 3 E(X^{2}) + 1 = \left[\frac{3x^{3}}{15} + \frac{x}{5}\right]^{6}$	dM1
	$\begin{bmatrix} 15 & 5 \end{bmatrix}_{1}$ $= 44$	Alcao
	- 44	(3)
	Notes	
(a) (c)	M1 writing or using $1 - F(4)$ oe M1 for differentiating to get $1/5$	
	A1 both lines correct with ranges	
(e)	M1 $\frac{(6-1)^2}{12}$ or $\int_1^6 \frac{1}{5} x^2 dx$ - 'their 3.5' ²	
(f)	1st M1 "their Var(X)" + ["their E(X)"] $_{Y^{n+1}}^{2}$ (which must follow from the 1st meth	nod in (e))
	$\boxed{\mathbf{or} \int_{1}^{6} \frac{1}{5} x^{2} dx \text{ and integrating } x^{n} \to \frac{x^{n-1}}{n+1} \text{ (may be seen in (e))} \underline{\mathbf{or}} \text{ writing } \int_{1}^{6} \frac{1}{5} x^{2} dx = \frac{1}{$	$\int_{0}^{6} \frac{1}{5} (3x^2 + 1) \mathrm{d}x$
	(May be implied by $\frac{43}{3}$ seen)	
	2^{nd} M1 (dependent on previous M1) using $3 \times$ 'their $E(X^2)$ ' + 1	
	or $\int_1^6 \frac{1}{5} (3x^2 + 1) dx$ and integrating $x^n \to \frac{x^{n+1}}{n+1}$	

Question Number	Scheme					Mark	S
	(A random varia	ble) that is a func	tion of a (random) sample involving	g no unknown		
2 (a)	quantities/param	eters				B1	
3(a)	or						
	A quantity calcu	lated solely from	a random sample				
							(1
(b)	_	-	from a population	n; pabilities is a samp	dina		
	distribution		•	aomics is a samp	ning	B1	
	or a probability	distribution of	a statistic				(1
	100 4	3					(1
(c)	$Mean = 100 \times \frac{4}{7}$	$+200 \times \frac{1}{7}$					
	$=\frac{1000}{7}$			aw	rt 143	B1	
	/	4 2	$(1000)^2$				
	Variance = 100	$^2 \times \frac{4}{7} + 200^2 \times \frac{3}{7}$	$-\left(\frac{1000}{7}\right)$			M1	
					. 2450 (; 2.2		
	$=\frac{120}{3}$	49		awr	t 2450 (to 3sf)	A1	
(4)	(100 100 100)						(3
(d)	(100,100,100) (100,100,200)	(100,200,100) (200,100,100) c	or 3 x (100,100,2	(00)	B2	
	(100,200,200) (200,100,200) (200,200,100) or 3 x (100,200,200)						
	(200,200,200)						(2
()	(100 100 100)	$(4)^3$	64	. 0.107			
(e)	(100,100,100)	$\left(\frac{4}{7}\right)^3 =$	343	awrt 0.187			
	(200,200,200)	$\left(\frac{3}{7}\right)^3 =$	27	awrt 0.0787		B1 both	
	(200,200,200)	$\left(\frac{-}{7}\right)^{-}$	343	awit 0.0767		Di botti	
	(100,100,200)	$3\times\left(\frac{4}{-}\right)^2$	$\times \left(\frac{3}{7}\right) = \frac{144}{343}$	awrt 0.42	20 (allow 0.42)	M1	
	(100,100,200)	(')	(')		(wire // ov .=)		
	(100,200,200)	$3\times\left(\frac{4}{-}\right)$	$\left(\frac{3}{7}\right)^2 = \frac{108}{343}$	awrt (0.315	A1	
		(7)	(7) 343				
	m	100	400/3	500/3	200		
			/3 awrt 133	/3 awrt 167			
	P(M=m)	64	144		27	A 1	
		$\frac{64}{343}$ or	$\frac{111}{343}$ or	$\frac{108}{343}$ or	$\frac{27}{343}$ or	A1	
	II .	awrt 0.187	awrt 0.420	awrt 0.315	awrt 0.0787		
			(0110000 0 40)				
			(allow 0.42)]	

Question Number	Scheme	Marks	
(a)	Notes B1 for a definition which includes each of the following 3 aspects A function¹ of a (random) sample² involving no unknown quantities/parameter 1. function/quantity/calculation/value/random variable 2. sample/observations/data 3. no unknown parameters/no unknown values/solely (from a sample)	\mathbf{s}^3	
(b)	B1 requires all underlined words: <u>All values</u> of a <u>statistic</u> with their associated <u>probabilities</u> or <u>probability distribution</u> of a <u>statistic</u>		
(c)	M1 $100^2 \times \frac{4}{7} + 200^2 \times \frac{3}{7} - (\text{their mean})^2$		
(d)	B1 any 2 of (100,100,100), (100,100,200) any order, (100,200,200) any ord)0)
(e)	B1 all correct, allow 3 \times (100,100,200) and 3 \times (100,200,200) and (100,100 (200,200,200)) Note: Allow other notation for 100 and 200 e.g. Small and Large B1 Both probabilities for (100,100,100) and (200,200,200) correct M1 $3\times p^2\times (1-p)$ A1 either correct	,100) and	
	A1 all means correct and all probabilities correct (table not required but means must be associated with correct probabilities)		

Question Number	Scheme	Marks
4(a)	$X \sim \text{Po}(6)$ $P(5 \le X < 7) = P(X \le 6) - P(X \le 4) \text{ or } \frac{e^{-6}6^{5}}{5!} + \frac{e^{-6}6^{6}}{6!}$	M1 M1
	= 0.6063 - 0.2851 $= 0.3212$ awrt 0.321	A1 (3)
(b)	H_0 : $\lambda = 9$ H_1 : $\lambda < 9$	B1
	X~Po(9) therefore	
	$P(X \le 4) = 0.05496 \text{ or } CR \ X \le 3$	B1
	Insufficient evidence to reject H ₀ or Not Significant or 4 does not lie in the critical region. There is no evidence that the mean number of <u>accidents</u> at the crossroads has	dM1
	reduced/decreased.	(4)
(a)	Notes M1 writing or using Po(6) M1 either $P(X \le 6) - P(X \le 4)$ or $\frac{e^{-\lambda} \lambda^5}{5!} + \frac{e^{-\lambda} \lambda^6}{6!}$	(1)
(b)	In either $P(X \le 6) - P(X \le 4)$ or $\frac{1}{5!} + \frac{1}{6!}$ 1^{st} B1 both hypotheses correct (λ or μ) allow 0.5 instead of 9 2^{nd} B1 either awrt 0.055 or critical region $X \le 3$ dM1 for a correct comment (dependent on previous B1) Contradictory non-contextual statements such as "not significant" so "reject H."	
	score M0 (May be implied by a correct contextual statement) A1 cso requires correct contextual conclusion with underlined words and all previous marks in (b) to be scored.	

Question Number	Scheme	Marks
5(a)	$\int_{-1}^{2} k(x^2 + a) dx + \int_{2}^{3} 3k \ dx = 1$	M1
	$\left[k \left(\frac{x^3}{3} + ax \right) \right]_{-1}^2 + \left[3kx \right]_{2}^3 = 1$	dM1
	$k\left(\frac{8}{3} + 2a + \frac{1}{3} + a\right) + 9k - 6k = 1$	A1
	$\int_{-1}^{2} k(x^{3} + ax) dx + \int_{2}^{3} 3kx dx \left[= \frac{17}{12} \right]$	M1
	$\left[k \left(\frac{x^4}{4} + \frac{ax^2}{2} \right) \right]_{-1}^2 + \left[\frac{3kx^2}{2} \right]_{2}^3 = \frac{17}{12}$	dM1
	$k\left(4+2a-\frac{1}{4}-\frac{a}{2}\right)+\frac{27k}{2}-6k=\frac{17}{12}$	A1
	$\frac{45k}{4} + \frac{3ak}{2} = \frac{17}{12}$ $135k + 18ak = 17$	
	99k = 11	ddM1
	$a=1, k=\frac{1}{9}$	A1
(b)	2	B1 (1)
(a)	Notes $1^{\text{st}} \text{ M1 writing or using } \int_{-1}^{2} k(x^{2} + a) dx + \int_{2}^{3} 3k \ dx = 1 \text{ ignore limits}$ $2^{\text{nd}} \text{ dM1 attempting to integrate at least one } x^{n} \to \frac{x^{n+1}}{n+1} \text{ and sight of correct}$ $\lim_{n \to \infty} (\text{dependent on previous M1})$	(-)
	1^{st} A1 a correct equation – need not be simplified 3^{rd} M1 $\int_{-1}^{2} k(x^3 + ax) dx + \int_{3}^{3} 3kx dx$ ignore limits	
	4 th dM1 setting = $\frac{17}{12}$ and attempting to integrate at least one $x^n \to \frac{x^{n+1}}{n+1}$	
	and sight of correct limits (dependent on previous M1)	
	2 nd A1 a correct equation – need not be simplified	
	5^{th} ddM1 attempting to solve two simultaneous equations in a and k by eliminating 1 variable (dependent on 1^{st} and 3^{rd} M1s)	
	3^{rd} A1 both a and k correct	

Question Number	Scheme	Marks
6. (a)	$P(X = 5) = {}^{20}C_5(0.3)^5(0.7)^{15}$ or $0.4164 - 0.2375$ = 0.17886 awrt 0.179	M1 A1
(b)	Mean = 6 $sd = \sqrt{20 \times 0.7 \times 0.3}$ = 2.049 awrt 2.05	B1 M1 A1
(c)	$H_0: p = 0.3$ $H_1: p > 0.3$	B1 (3
	$X \sim B(20,0.3)$ $P(X \ge 8) = 0.2277$ or $P(X \ge 10) = 0.0480$, so $CR X \ge 10$	M1 A1
	Insufficient evidence to reject H_0 or Not Significant or 8 does not lie in the critical region.	dM1
	There is no evidence to support the <u>Director (of Studies')</u> <u>belief/There</u> is no evidence that the <u>proportion</u> of <u>parents</u> that <u>do not support</u> the <u>new curriculum</u> is greater than 30%	Alcso
(d)	$X \sim B(2n, 0.25)$ $X \sim B(8, 0.25)$ $P(X \ge 4) = 0.1138$ $X \sim B(10, 0.25)$ $P(X \ge 5) = 0.0781$	M1
	2n = 10 $n = 5$	A1 A1
(a) (b)	Notes $M1^{20}C_5(p)^5(1-p)^{15} \text{ or using } P(X \le 5) - P(X \le 4)$ $M1 \text{ use of } 20 \times 0.7 \times 0.3 \text{ (with or without the square root)}$	
(c)	B1 both hypotheses correct $(p \text{ or } \pi)$ M1 using $X \sim B(20,0.3)$ (may be implied by 0.7723, 0.2277, 0.8867 or 0.1133) A1 awrt 0.228 or CR $X \ge 10$	
	dM1 a correct comment (dependent on previous M1) A1 cso requires correct contextual conclusion with underlined words and all previous marks in (c) to be scored.	
(d)	M1 for 0.1138 or 0.0781 or 0.8862 or 0.9219 seen 1^{st} A1 B(10, 0.25) selected (may be implied by $n = 10$ or $2n = 10$ or $n = 5$) An answer of 5 with no incorrect working seen scores 3 out of 3	
	Special Case: Use of a normal approximation, M1 for $\frac{(n-0.5)-\frac{n}{2}}{\sqrt{\frac{3}{8}n}} = z$ with $1.28 \le z \le 1.29$, 1^{st} A1 for $n=4.2/4.3$, 2^{nd} A1 for $n=5$	

Question Number	Scheme	Marks
7.	$Y \sim N\left(\frac{n}{5}, \frac{4n}{25}\right)$	B1
	$Y \sim N\left(\frac{n}{5}, \frac{4n}{25}\right)$ $P(Y \ge 30) = P\left(Z > \frac{29.5 - n/5}{\frac{2}{5}\sqrt{n}}\right)$	M1 M1A1
	$\frac{29.5 - \frac{n}{5}}{\frac{2}{5}\sqrt{n}} = 2$	B1
	$n + 4\sqrt{n} - 147.5 = 0$ or $0.04n^2 - 12.44n + 870.25 = 0$	dM1
	$n + 4\sqrt{n} - 147.5 = 0$ or $0.04n^2 - 12.44n + 870.25 = 0$ $\sqrt{n} = 10.3$ $n = 106.26$ or $n = 204.73$	A1
	n = 106	A1 cao (8)
	Notes	
	1 st B1 writing or using $N\left(\frac{n}{5}, \frac{4n}{25}\right)$	
	1 st M1 writing or using 30 +/- 0.5 2 nd M1 standardising using 29, 29.5, 30 or 30.5 and their mean and their sd 1 st A1 fully correct standardisation (allow +/-)	
	2^{nd} B1 for $z = +/-2$ or awrt 2.00 must be compatible with their	
	standardisation 3 rd dM1 (dependent on 2 nd M1) getting quadratic equation and solving	
	leading to a value of \sqrt{n} or n	
	2 nd A1 awrt 10.3 or awrt (106 or 107 or 204 or 205) 3 rd A1 for 106 only (must reject other solutions if stated)	
	Note: $\frac{29.5 - \frac{n}{5}}{\frac{2}{5}\sqrt{n}} = -2$ leading to an answer of 106 may score	
	$\frac{-5}{5}\sqrt{n}$ B1M1M1A1B0M1A1A1	

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE